Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

Subsampling under distributional constraints

Abstract : Some complex models are frequently employed to describe physical and mechanical phenomena. In this setting we have an input X in a general space, and an output Y = f (X) where f is a very complicated function, whose computational cost for every new input is very high. We are given two sets of observations of X, S 1 and S 2 of different sizes such that only f (S 1) is available. We tackle the problem of selecting a subsample S 3 ∈ S 2 of smaller size on which to run the complex model f , and such that distribution of f (S 3) is close to that of f (S 1). We suggest three algorithms to solve this problem and show their efficiency using simulated datasets and the Airfoil self-noise data set.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées
Contributeur : Florian COMBES Connectez-vous pour contacter le contributeur
Soumis le : jeudi 12 mai 2022 - 19:22:32
Dernière modification le : samedi 14 mai 2022 - 03:40:20


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-03666898, version 1


Florian Combes, Ricardo Fraiman, Badih Ghattas. Subsampling under distributional constraints. 2022. ⟨hal-03666898⟩



Consultations de la notice


Téléchargements de fichiers