A characterization of stochastically stable networks

Abstract : ackson and Watts (J Econ Theory 71: 44-74, 2002) have examined the dynamic formation and stochastic evolution of networks. We provide a refinement of pairwise stability, p-pairwise stability, which allows us to characterize the stochastically stable networks without requiring the "tree construction" and the computation of resistance that may be quite complex. When a 1/2 -pairwise stable network exists, it is unique and it coincides with the unique stochastically stable network. To solve the inexistence problem of p-pairwise stable networks, we define its set-valued extension with the notion of p-pairwise stable set. The 1/2 -pairwise stable set exists and is unique. Any stochastically stable networks is included in the 1/2 -pairwise stable set. Thus, any network outside the 1/2 -pairwise stable set must be considered as a non-robust network. We also show that the 1/2 -pairwise stable set can contain no pairwise stable network and we provide examples where a set of networks is more "stable" than a pairwise stable network.
Type de document :
Article dans une revue
International Journal of Game Theory, Springer Verlag, 2006, 34 (3), pp.351-369. 〈10.1007/s00182-006-0024-7〉
Liste complète des métadonnées

https://hal-pjse.archives-ouvertes.fr/halshs-00754134
Contributeur : Caroline Bauer <>
Soumis le : mardi 20 novembre 2012 - 08:44:47
Dernière modification le : mardi 24 avril 2018 - 17:20:09

Lien texte intégral

Identifiants

Collections

Citation

Olivier Tercieux, Vincent Vannetelbosch. A characterization of stochastically stable networks. International Journal of Game Theory, Springer Verlag, 2006, 34 (3), pp.351-369. 〈10.1007/s00182-006-0024-7〉. 〈halshs-00754134〉

Partager

Métriques

Consultations de la notice

254