Ising model versus normal form game

Abstract : The 2-spin Ising model in statistical mechanics and the 2×2 normal form game in game theory are compared. All configurations allowed by the second are recovered by the first when the only concern is about Nash equilibria. But it holds no longer when Pareto optimum considerations are introduced as in the prisoner's dilemma. This gap can nevertheless be filled by adding a new coupling term to the Ising model, even if that term has up to now no physical meaning. An individual complete bilinear objective function is thus found to be sufficient to reproduce all possible configurations of a 2×2 game. Using this one-to-one mapping new perspectives for future research in both fields can be envisioned.
Type de document :
Article dans une revue
Physica A: Statistical Mechanics and its Applications, Elsevier, 2010, 389 (3), pp.481-489. 〈10.1016/j.physa.2009.09.029〉
Liste complète des métadonnées

https://hal-pjse.archives-ouvertes.fr/halshs-00754481
Contributeur : Caroline Bauer <>
Soumis le : mardi 20 novembre 2012 - 09:43:28
Dernière modification le : jeudi 10 mai 2018 - 02:00:54

Lien texte intégral

Identifiants

Collections

Citation

Serge Galam, Bernard Walliser. Ising model versus normal form game. Physica A: Statistical Mechanics and its Applications, Elsevier, 2010, 389 (3), pp.481-489. 〈10.1016/j.physa.2009.09.029〉. 〈halshs-00754481〉

Partager

Métriques

Consultations de la notice

282