When is the lowest equilibrium payoff in a repeated game equal to the minmax payoff?

Abstract : We study the relationship between a player's lowest equilibrium payoff in a repeated game with imperfect monitoring and this player's minmax payoff in the corresponding one-shot game. We characterize the signal structures under which these two payoffs coincide for any payoff matrix. Under an identifiability assumption, we further show that, if the monitoring structure of an infinitely repeated game "nearly" satisfies this condition, then these two payoffs are approximately equal, independently of the discount factor. This provides conditions under which existing folk theorems exactly characterize the limiting payoff set.
Type de document :
Article dans une revue
Journal of Economic Theory, Elsevier, 2010, 145 (1), pp.63-84. 〈10.1016/j.jet.2009.07.002〉
Liste complète des métadonnées

https://hal-pjse.archives-ouvertes.fr/halshs-00754488
Contributeur : Caroline Bauer <>
Soumis le : mardi 20 novembre 2012 - 09:44:15
Dernière modification le : mardi 24 avril 2018 - 17:20:14

Identifiants

Collections

Citation

Olivier Gossner, Johannes Hörner. When is the lowest equilibrium payoff in a repeated game equal to the minmax payoff?. Journal of Economic Theory, Elsevier, 2010, 145 (1), pp.63-84. 〈10.1016/j.jet.2009.07.002〉. 〈halshs-00754488〉

Partager

Métriques

Consultations de la notice

266