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Abstract 
 
This paper analyzes the effect of malaria prevalence and indoor residual spraying on the 
probability of sleeping under an insecticide-treated bed net in nine Sub-Saharan countries. 
Specifically, it examines whether bed net usage is elastic with respect to malaria prevalence and 
whether indoor residual spraying, which is a public intervention, crowds out bed net usage, 
which is a private behavior. Using data on individual bed net usage and household indoor 
residual spraying combined with local malaria prevalence, we show that malaria prevalence has a 
positive effect on bed net usage, but that bed net usage is inelastic with respect to malaria 
prevalence, with elasticity ranging from 0.42 for adult women to 0.59 for older children, in our 
preferred model. We also find that indoor residual spraying does not crowd out bed net usage. 
Instead, individuals who live in houses that were recently sprayed are more likely to use a bed 
net. 
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1. Introduction 

Malaria is a life-threatening disease that is transmitted to people through the bites of infected 

mosquitoes. Despite the existence of proven strategies to prevent infection, malaria remains one 

of the major causes of mortality in Sub-Saharan Africa (WHO, 2011).  Roll Back Malaria’s 

Global Malaria Action Plan (GMAP) is the first global plan on how to control and eliminate 

malaria, containing strategies, costs, goals, and timelines. The primary intervention 

recommended by GMAP for Sub-Saharan Africa is that every person at risk sleeps under an 

insecticide-treated mosquito net (ITN). Sleeping under an ITN is considered the most effective 

intervention to prevent malaria because the mosquito dies immediately when it comes into 

contact with the ITN (Lengeler, 2004). This does not only prevent individuals’ infection but also 

reduces the mosquito population. The second most important malaria control intervention 

recommended by GMAP for Sub-Saharan Africa is indoor residual spraying (IRS), which entails 

spraying the interior of dwellings with an insecticide to kill the mosquitoes that spread the 

disease. In most cases, GMAP recommends that these two interventions be used together (RBM, 

2012). 

One of the main contributions of economics to epidemiology is the recognition that 

individuals adapt their health behaviors rationally in response to changes in the prevalence of an 

infectious disease like malaria.  The “rational epidemics” theory recognizes the interdependence 

between the infection rate and preventive behaviors which in turn affect the probability of 

becoming infected (Geoffard and Philipson, 1996; Gersovitz and Hammer, 2003, 2005; Kremer, 

1996; Philipson, 2000).  A central measure in this theory is the “prevalence elasticity” of the 

individual demand for prevention, which quantifies the change in individuals’ preventive 

behaviors caused by a change in the prevalence of the disease. We expect this elasticity to be 

positive. Malaria will follow different paths, depending on whether ITN usage is elastic or 
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inelastic. If ITN usage is elastic (i.e. the elasticity is greater than one), a decline in malaria 

prevalence will lead to a greater decrease in ITN usage. Consequently, it will become 

progressively more expensive to achieve further decreases in malaria prevalence and the disease 

may never be eradicated. Alternatively, an inelastic ITN usage (i.e. the elasticity is between zero 

and one), implies that as malaria risks decline, individuals will reduce their preventive behaviors 

less than proportionally, allowing for the possibility that ITNs may lead to the eradication of 

malaria. 

In addition to responding to malaria prevalence, individuals may also adapt their ITN 

usage in response to government interventions. Sleeping under an ITN is an individual behavior 

that requires active participation of individuals: they must hang and sleep under the net. IRS 

programs, on the other hand, are public preventive interventions that do not require any active 

participation of individuals. They are provided free of charge by the national malaria control 

programs. However, individuals may respond to IRS by reducing their use of ITNs, and this 

“crowding out” effect may reduce the overall effectiveness of controlling malaria with IRS. 

In this study, we empirically estimate the malaria prevalence elasticity of sleeping under 

an ITN and test whether IRS crowds out ITN usage. Existing literature finds that the there is a 

positive relationship between malaria prevalence and preventive behaviors (Pattanayak et al., 

2006; Berthélemy et al., 2013; Seban et al., 2013), but the evidence is mixed regarding the 

magnitude of the elasticity.2 There is no agreement on the substitutability between IRS and ITN 

                                                           
2
 Pattanayak et al. (2006), using data from the Global Health Atlas, find elasticities between 0.159 (net usage) and 

0.520 (net sold). Berthélemy et al. (2013)  make a village-level analysis using data for Uganda in 2009. They find 
that malaria prevalence is positively correlated with the usage of ever treated nets in Ugandan villages. Finally, 
Seban et al. (2013) use household-level data from the Haut Katanga district in the Democratic Republic of Congo in 
2009, merged with malaria prevalence information from the Malaria Atlas Project. They show that bednet ownership 
is elastic with respect to malaria prevalence. 
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(Chase et al., 2009; Carneiro et al., 2012).3 However, the existing microeconomic evidence on 

the effects of malaria prevalence and IRS on preventive behaviors is based on relatively small 

samples with limited variation in malaria prevalence. 

We construct a unique dataset by merging data from four sources: (i) recent Demographic 

and Health Surveys that contain individual-level information on sleeping under an ITN and IRS 

for nine Sub-Saharan African countries; (ii) malaria prevalence data from the Malaria Atlas 

Project (MAP); (iii) precipitation and temperature data from the Climatic Research Unit (CRU); 

and (iv) the Kiszewski et al.’s (2004) index of malaria ecology. Our empirical models address 

the three sources of potential endogeneity of malaria prevalence and IRS: (i) the omission of 

important third common hidden factors, such as free bednet distribution campaigns, which are 

correlated with malaria prevalence and IRS, (ii) reverse causality running from ITN usage to 

malaria prevalence in the area, and (iii) measurement error in malaria prevalence. We perform 

our analysis separately for four population groups which may have different responses: children 

under 5, older children, adult women, and adult men. 

Our results show that malaria prevalence has a positive effect on the probability of 

sleeping under an ITN for all four population groups. However, our study indicates that ITN 

usage is inelastic with respect to malaria prevalence, with elasticity ranging from 0.42 for adult 

women to 0.59 for older children in our preferred specification. In addition, we find that IRS 

does not crowd out ITN usage for any population group. So IRS is not a substitute but a 

complement to ITN usage. Thus the parameter estimates of our study imply that malaria can be 

eradicated or, at least, can be controlled. 

                                                           
3
 Chase et al. (2009), using data from a district in Mozambique, find that individuals who received IRS are less 

willing to pay for ITNs. Using experimental data from a region in Eritrea, Carneiro et al. (2012) show that receiving 
IRS increases ITN ownership and usage. 
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The rest of the paper is organized as follows. Section 2 presents a background on malaria. 

Section 3 outlines the empirical strategy. Section 4 describes the data construction. Section 5 

presents the empirical specification. Section 6 discusses the results. Finally, Section 7 contains 

some concluding remarks.  

 

2. Background on malaria in Africa 

Malaria is an infectious disease that is caused by the parasite Plasmodium.  It is transmitted when 

infected blood is passed from one person to the next by the bite of infected mosquitoes belonging 

to the Anopheles genus.  

There are four species of the Plasmodium parasite that cause malaria in humans, but the 

Plasmodium falciparum specie is the most common (it is responsible for 98% of malaria 

infections) and the most deadly (RBM, 2012). For this reason, in this study, we refer to “malaria 

episodes” and “malaria prevalence” as those caused by the Plasmodium falciparum parasite. 

More than 60 species of Anopheles can transmit malaria. In Sub-Saharan Africa, the 

Anopheles gambiae species contain the most important mosquito vectors of malaria and they 

play a predominant role in the transmission of Plasmodium falciparum. 

People residing in malaria endemic regions slowly acquire immunity to malaria over their 

childhood years. Children under 3 lack immunity, and they are thus very vulnerable to the 

disease. When they are bitten by an infected mosquito, they are almost certain to develop severe 

malaria episodes which can lead to death in the absence of prompt treatment. By age 10, most 

infected children suffer at worst mild complications (febrile episodes); and by 15, most 

individuals have asymptomatic infections, and the risk of developing even mild complications is 

very low. Note that women who become pregnant temporarily lose their immunity, which makes 

them a very vulnerable group together with young children. 

http://en.wikipedia.org/wiki/Plasmodium_falciparum
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In areas where malaria is seasonal and exposure to the parasite is infrequent, individuals 

do not develop clinical immunity, and the risk of severe malaria episodes also pertains to older 

children and adults (Langhorne et al., 2008; Doolan et al., 2009). 

Malaria infections can be controlled using several preventive interventions: sleeping 

under an ITN, IRS, intermittent preventive treatment during pregnancy, use of mosquito 

repellants, cleaning drains, and treatment of standing water with larvicidal chemicals. These 

interventions work by reducing the number of mosquitoes and/or by preventing bites. Anopheles 

mosquitoes tend to rest in walls and curtains inside a house and they are inclined to bite at night. 

This makes sleeping under an ITN and IRS highly effective to prevent malaria transmission 

(RBM, 2012). Thus it is not surprising that the GMAP set a target of universal coverage with 

ITN and/or IRS for all endemic areas. Universal coverage with ITN is defined as each household 

owning one ITN per two members and 80% utilization, while universal coverage with IRS 

implies that all interior walls for every house are periodically sprayed with insecticide (RBM, 

2012).  Bednets are distributed in Africa through different channels including vouchers, social 

marketing, free distribution to vulnerable groups in health care facilities or schools, and free 

mass distribution campaigns (RBM, 2012). IRS, on the other hand, is provided free of charge to 

selected areas within a country by the national malaria control program. 

 

3. Empirical and identification strategy 

Our goal is to identify the effects of malaria prevalence and IRS on the probability of sleeping 

under an ITN for four different population groups: children under 5, older children, adult 

women, and adult men. These groups have different levels of immunity against malaria and may 
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respond differently to malaria prevalence and IRS. We assume that the probability of sleeping 

under an ITN for individual i who lives in cluster c (i.e. neighborhood or village) is given by:                                              (1)             

where MalPrc denotes the malaria prevalence in the cluster, IRSic  represents whether the house 

was sprayed with insecticide, and Xic represents a vector of observed exogenous controls that 

affect ITN usage. These exogenous controls include individual- and cluster-level characteristics. 

Finally, vic represents unobservable (to us) characteristics at the individual- and cluster-level that 

also affect ITN usage. We estimate linear probability models and we interpret the coefficients as 

the average partial effects.4  We expect malaria prevalence to have a positive effect on the 

probability of sleeping under an ITN. In contrast, the effect of IRS on ITN usage could be 

positive or negative, depending on whether individuals treat ITN usage and indoor residual 

spraying as complements or substitutes. 

There are three challenges that we need to address in order to identify the effect of 

malaria prevalence and IRS on the probability of sleeping under an ITN. The first challenge is 

omitted variable bias caused by malaria campaigns that distribute nets for free. Cohen and Dupas 

(2010) shows that free net campaigns are the most important determinant of ITN usage. These 

free net campaigns may be correlated with our main explanatory variables (malaria prevalence 

and IRS). The second challenge is reverse causation that goes from ITN usage to malaria 

prevalence, since malaria prevalence in a particular cluster is affected by the ITN usage of the 

individuals who live in that cluster. The third empirical challenge is measurement error in 

malaria prevalence. Indeed, our malaria prevalence is not measured with perfect accuracy and is 

not always equal to the true level of malaria prevalence in the cluster. In our analysis, we use six 

specifications to address these concerns.   
                                                           
4
 See Angrist and Pischke (2009) for a discussion of the advantages and disadvantages of linear probability models. 
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(1) First, in our baseline specification, we estimate our model controlling for socio-

demographic characteristics, precipitation and temperature variables, and survey fixed effects. 

The socio-demographic variables include gender, age, education (either maternal or individual), 

household wealth, household size, a dummy for whether the child is the child of the household 

head, and a dummy for living in an urban cluster. The precipitation and temperature variables are 

the monthly precipitation and temperature deviations from the mean in the cluster; these 

variables indicate whether the precipitation and temperature in the cluster during the month of 

the interview are above or below normal. While this baseline specification can account for some 

of the observable differences across individuals and clusters, there still may be unobservable 

differences in free net campaigns that bias the relationship between malaria prevalence and IRS 

on the one hand and ITN usage on the other hand. 

(2)-(3) In our second and third specifications, we add to the baseline model a control for 

whether the cluster where the individual lives had a “free net campaign” and a control for the 

number of nets per children under 5 or per person in the household. These specifications address 

the potential omitted variable bias caused by malaria campaigns.  

(4) In our fourth specification, we include past ITN usage as a control. This lagged ITN 

usage is aimed at minimizing reverse causality. However, this approach may not be sufficient 

and in our last two specifications we use instrumental variables to control for reverse causality 

and measurement error in malaria prevalence.  

(5) In our fifth specification, we use two instruments for malaria prevalence. Our first 

instrument is the malaria ecology index developed by Kiszewski et al. (2004). It has been widely 

used as an instrument for malaria prevalence (see Pattanayak et al., 2006; Bleakley, 2010; Lucas, 
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2010; among others). This index is calculated from the biological characteristics of the dominant 

Anopheles vectors as well as climate.  

Our second instrument is a predicted malaria prevalence variable which captures the 

component of malaria prevalence that does not depend on human malaria preventive behavior.  

This predicted cluster malaria prevalence is based on a regression of malaria prevalence on 

cluster altitude, precipitation, and temperature data, using a very flexible functional form. 

Precipitation, temperature, and altitude have already been used as instruments for malaria 

prevalence in several studies, including Berthélemy et al. (2013), Bleakley (2010), and Seban et 

al. (2013), although not as a generated instrument. A concern about using instruments based on 

precipitation and temperature is that they may have a direct impact on the probability of sleeping 

under an ITN, e.g. the person does not sleep under a net because it is too hot. To address this 

concern, we always include a control for the precipitation and temperature in the cluster at the 

time of the interview in our specifications (more precisely, we control for the month of the 

interview precipitation and temperature deviations from the annual mean). Our instrument (the 

predicted cluster malaria prevalence) depends on the cluster altitude, average monthly maximum 

precipitation and temperature, and average monthly minimum precipitation and temperature. We 

believe that once we control for the precipitation and temperature deviations from the annual 

means, the cluster altitude, average monthly maximum and minimum precipitation and 

temperature will affect the decision of sleeping under an ITN during the month of the interview 

only through their impact on malaria prevalence.  

(6) Finally, in our last specification, we estimate our model using only Kiszewski et al. 

(2004)’s malaria ecology index as an instrument for malaria prevalence. In our opinion this index 

is the best available instrument for malaria prevalence, because individuals’ malaria preventive 
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behaviors will not affect which Anopheles vector is dominant in the area and will also have no 

effect on the climate. Furthermore, one of the reasons the authors created this index was for use 

as an instrument for malaria endemicity when studying the effects of malaria on poverty, where 

some of the endogeneity concerns are similar to our study.5 If our identification assumptions are 

valid, the results of specifications (5) and (6) should be similar. 

 

4. Data construction 

Our data come from four different sources. First, we use individual- and household-level 

information from the MEASURE Demographic and Health Surveys project.  Second, we collect 

information on malaria prevalence from the Malaria Atlas Project. Third, we use precipitation 

and temperature data from the Climatic Research Unit at the University of East Anglia. Finally, 

we use the Kiszewski et al.’s (2004) index of malaria ecology.  

 

4.1. The MEASURE Demographic and Health Surveys project  

All the individual- and household-level information on ITN usage, net ownership, IRS, and 

socio-demographic characteristics come from the project of the Monitoring and Evaluation to 

Assess and Use Results Demographic and Health Surveys (MEASURE DHS).  Within this 

project, we use data from the Standard Demographic Health Surveys (DHS), the Malaria 

Indicator Surveys (MIS), and the AIDS Indicator Surveys (AIS). The standard DHS contain 

detailed information on health and preventive health behaviors for children, women, and men.  

                                                           
5
 A related measure to Kiszewski’s malaria ecology index that is well known in the epidemiological literature is the 

PfR0, which is the basic reproductive number for malaria for a naïve population (Gething et al. 2011). PfR0 would be 
an ideal instrument for malaria prevalence; unfortunately, estimates of PfR0 are not available. We have information 
on PfRc, which is the basic reproductive number for malaria under control. PfRc is calculated as a nonlinear 
transformation of our measure of malaria prevalence, and therefore would suffer the same endogeneity issues. 
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MIS and AIS use the same basic questionnaire as the standard DHS, but have more detailed 

questions about malaria or AIDS and do not include all the modules of the standard DHS. 

Another notable difference between DHS and MIS is that the MIS is conducted during the 

months of the year when the risk of malaria is the highest. For certain surveys, DHS/MIS/AIS 

have additional information on public malaria control interventions such as whether the house 

was sprayed with insecticide and whether the household received a free mosquito net. 

DHS/MIS/AIS samples are nationally representative of the population, but they are 

drawn from geographical clusters. Clusters vary in size and population but typically contain 

around 500 individuals. In rural areas a cluster is usually a village, and in urban areas it is 

approximately a city block. 

We restrict our analysis sample to DHS/MIS/AIS surveys for Sub-Saharan Africa that 

were conducted in 2011 and 2012, that contain information on indoor residual spraying, and for 

which the latitude, longitude, and altitude of the centroid of the clusters is available. Our final 

sample includes Angola (MIS 2011), Burundi (MIS 2012), Cameroon (DHS 2011), Liberia (MIS 

2011), Madagascar (MIS 2011), Malawi (MIS 2012), Mozambique (DHS 2011), Tanzania (AIS 

2011-12), and Uganda (DHS 2011).  The locations of the countries and clusters of interest are 

shown in Figure 1a. 

[Insert Figure 1 here] 

 

4.1. Malaria prevalence and the Malaria Atlas Project 

Our measure of malaria prevalence is the percentage of individuals infected with the 

Plasmodium falciparum parasite in the cluster. This parasite rate is commonly called PfPR. 
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Information on PfPR for each cluster was obtained from the Malaria Atlas Project (MAP) 

available at www.map.ox.ac.uk. 

  MAP contains a number of maps and geographical data related to the spatial distribution 

of malaria. The best malaria prevalence data currently available at MAP is PfPR2-10 for 2010. 

PfPR2-10 captures the percentage of children between the ages of 2 to 10 that have detectable 

levels of the Plasmodium falciparum parasite using peripheral blood.6 PfPR2-10 is constructed 

from parasite surveys that are periodically carried out in areas known to have malaria. Then, 

using Bayesian geostatistical algorithms with adjustments for climatic and environmental factors, 

MAP made projections in time and space to create a continuous display of PfPR, called the 

Malaria Endemicity map, for all of Africa in 2010. Hay et al. (2009) and Gething et al. (2011) 

provide details on the construction of PfPR2-10.  

 We incorporate information on PfPR2-10 with our DHS/MIS/AIS data, using the latitude 

and longitude of the clusters. Note that we restrict our DHS/MIS/AIS data to the surveys 

conducted in 2011 and 2012, i.e. after the measurement of malaria prevalence in 2010, to 

mitigate reverse causation running from ITN usage to malaria prevalence. 

Figure 1b shows that malaria is highly endemic in Africa, but that there is a wide 

variation in the malaria prevalence rate, which ranges from less than 5% to over 75%.  Areas 

where PfPR is less than 5% must be treated with caution since malaria transmission is likely to 

be seasonal in these areas and universal coverage using ITNs may not be cost effective (Hay et 

al., 2009). For these reasons, we also restrict our analysis to areas where malaria is endemic and 

                                                           
6 The parasite is most easily detected in the 2 to 10 age group. 

http://www.map.ox.ac.uk/
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PfPR is greater than 5%. Overall, these restrictions leave us with 261,907 individuals, 2,854 

clusters, and nine countries.7 

Figure 1c shows that there is great amount of variation in ITN usage within and among 

countries. Also it appears to suggest that ITN usage may not be positively correlated with 

malaria prevalence.  Indeed, ITN usage and malaria prevalence are negatively correlated and 

only after we control for country fixed effects we see a positive correlation with malaria 

prevalence. 

 

4.3. The Climatic research unit data 

Using the latitude and longitude of the centroid of each cluster, we also merge the DHS/MIS/AIS 

clusters with the precipitation and temperature data from 2000 to 2010 based on weather station 

observations and interpolations from the Climatic Research Unit (CRU), available at 

www.cru.uea.ac.uk. 

 

4.4. Kiszewski et al. (2004) malaria ecology index 

Finally, we merge the DHS/MIS/AIS data with the Kiszewski et al. (2004) malaria ecology 

index. Recognizing that the risk of malaria transmission is a function of not only climatic 

variables but also the biological characteristics of the dominant mosquito vector, Kiszewski et al. 

(2004) constructed an index of malarial ecology (transmission stability) for 2004.  This index is 

                                                           
7 In previous versions of this study we used samples with a larger number of countries and our results were 
consistent with those reported in this version.  However, because the surveys were conducted prior to 2011 or they 
did not have information on IRS or ITN ownership, these countries were dropped from our sample. 

http://www.cru.uea.ac.uk/
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calculated using data about the human blood index for each dominant Anopheles vector and their 

daily survival rate as well as data on climate. This index is based on the characteristics of the 

Anopheles mosquito that is dominant, regardless if it carries a malaria parasite or not, and it is 

available at http://www.earth.columbia.edu. 

 

5. Empirical specification 

We estimate equation (1) for four different groups separately: children under 5, older children 

(ages 5-14), adult women (ages 15-49), and adult men (ages 15-49). 

 

Dependent variable: A binary indicating whether the individual slept under an ITN the previous 

night. We use this dependent variable in all specifications. We do not distinguish between long-

lasting insecticidal nets (LLINs), a relatively new technology, and regular ITNs that need to be 

re-impregnated every 6 months (RBM, 2012), since for some surveys we cannot distinguish 

between these two types of nets.  

 

Explanatory variables: Our main explanatory variables are the PfPR for 2010 in the cluster where 

the individual lives (malaria prevalence) and a dummy for whether the inside walls of the house 

where the individual lives were sprayed with insecticide during the past 12 months (IRS).  

Our socio-demographic controls include age, age of the mother (for children under 5 and 

older children), a dummy for being male (for children under 5 and older children), household 

size, dummies for being a child of the household head (for children under 5 and older children), 

for an urban area, for whether the mother completed primary education (for children under 5 and 
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older children), for whether the individual completed primary education (for adults), and for 

whether the individual lives in a household with the lowest wealth level. The latter variable is a 

dummy for whether the household has none of these items: an improved water source, improved 

sanitation facilities, and electricity.8  

Our specifications also include controls for country fixed effects, precipitation and 

temperature. The precipitation (respectively temperature) variable captures the difference 

between the month of the interview precipitation (respectively temperature) and the average 

precipitation (respectively temperature), in the cluster. These differences were calculated as 

follows:  we begin by taking the average precipitation (respectively temperature) for each cluster 

in each month from 2000-2010.  We then take the average over all months to get the average 

precipitation (respectively temperature) for a cluster. The difference is just the month of the 

interview average precipitation (respectively temperature) minus the average precipitation 

(respectively temperature) for each cluster.  

In some specifications we include a binary to indicate whether there was a “free net 

campaign” in the area. We approximate this variable by creating a dummy which equals one if 

over 80% of households in the cluster received a free ITN in the past two years. The data do not 

contain direct information on ITNs distribution campaigns, but we know whether the household 

received an ITN for free. If a large share of the households in a cluster received a free ITN 

during the last two years, it is likely that there was some form of mass campaign in that area.  

In specification (3), we include the number of nets per children under 5 in the household 

(for children under 5) and the number of nets per person in the household (for older children, 

                                                           
8 Following the World Bank, we define an improved water source as any of the following sources: piped water into 
dwelling, piped water to yard/plot, public tap or standpipe, tubewell or borehole, protected dug well, protected 
spring, and bottled water. Improved sanitation facilities are defined as a flush toilet, a piped sewer system, septic 
tank, a flush/pour flush pit latrine, a ventilated improved pit latrine (VIP), a pit latrine with slab, or a composting 
toilet. 
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adult women, adult men) to control availability of nets in the household. Finally, specification 

(4) includes past ITN usage in the region as one of our explanatory variables.9 

 

Instrumental variables: Our instruments are first the Kiszewski et al.’s malaria ecology index and 

second an exogenous predicted PfPR index.10 We calculate the latter index using the average 

temperature for a cluster described above.  We then find the average max temperature -- we find 

the month with the highest average temperature in the cluster for each year and then average over 

all the years. Using the same procedure, we find the average minimum temperature. We then 

repeat the exact same process to find the average, minimum, and maximum levels of 

precipitation for each cluster. We then take the squares, cubes, and quartics of each of the six 

climate variables as well as of cluster altitude, leaving us with 28 climate-altitude variables to 

use to explain malaria prevalence at the cluster level in a very rich, highly non-linear fashion.   

We then regress malaria prevalence (PfPR in 2010) on our 28 climate-altitude variables.  

The fit of the resulting prediction, with an R² of 0.57, is very high (See Appendix A). Our 

instrument is the prediction of prevalence from this regression. It captures the variation in 

malaria prevalence explained by climatic factors and altitude. 

 

6. Results 

Table 1 presents the summary statistics for the four population groups: children under 5, older 

children, adult men, and adult women. 

                                                           
9Ideally we would like to measure previous ITN usage for the same cluster. Unfortunately, DHS does not survey the 
same cluster over time. 
10 MAP also provides data on two other potential instruments for malaria prevalence, HbS and G6PD.  These are 
both blood disorders that provide protection against malaria. We also estimate our model using HbS (the percentage 
of neonates affected by sickle haemoglobin) as an additional instrument. The estimates are similar to our preferred 
specification, but we do not pass the overidentification test. Because HbS is correlated with malaria immunity, it is 
plausible that HbS affects the probability of sleeping under an ITN directly. These results are available upon request.    
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[Insert Table 1 here] 

Children under 5, who are the most vulnerable group, are the most likely to sleep under 

an ITN. Indeed, 44.7% of young children slept under an ITN the previous night, versus 44.5% of 

women, 33.9% of older children, and 33.2% of men.  

Mean malaria prevalence (PfPR in 2010) ranges from 33.81 to 35.46. Approximately 

17% of the individuals had their dwellings sprayed with an insecticide (IRS) in the year 

preceding the interview, while around 39% of them live in a household that received a free ITN 

in the two years preceding the interview.  Accordingly, there is nearly one (0.859) net available 

per child under 5 in each household.  For older children and adults, on average, there is 

approximately 0.261 net per person.    

Table 2 summarizes the results for our six specifications for children under 5 and older 

children, while Table 3 outlines the results for adults.   

[Insert Table 2 and 3 here] 

The effect of malaria prevalence on the probability of sleeping under an ITN is 

consistently positive and significant for all population groups and for all of the specifications.  

For children under 5, a percentage-point increase in the local malaria prevalence is associated 

with an increase in the probability of sleeping under an ITN of 0.0036 when the basic controls 

are included (column 1). When we add the control for free net campaigns, the effect decreases, 

as expected, to 0.0025, but remains positive and significant (column 2). Even if we hold the 

number of nets owned by the household constant, higher malaria prevalence increases the 

probability of sleeping under an ITN by 0.0022 (column 3). Controlling for lagged ITN usage in 

the region does not appear to affect the effect that malaria prevalence has on the probability of 
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sleeping under an ITN (column 4). Finally, once we use instrumental variables to address reverse 

causality and measurement error in column (5), the effect of a percentage increase in malaria 

prevalence increases to 0.0060 with an associated malaria prevalence elasticity of 0.4760. In 

column (6) we only use the Kiszewski malaria ecology index as an instrument and the results are 

very similar (0.0052 for the average partial effect and 0.4125 for the malaria prevalence 

elasticity) but the standard errors are higher than in column (5). We find a similar pattern for 

older children, adult women, and adult men. The malaria prevalence elasticities are always well 

below unity with a highest value of 0.5853 for older children.11      

Like any study that uses instrumental variables, the strength of our results in Tables 2 and 

3, columns (5) and (6), crucially depends on the quality of our instruments. Tables 2 and 3 report 

the first stage F-tests for weak instruments, for columns (5) and (6), and the Hansen J-test of 

overidentification restrictions, for column (5). The instruments perform very well using these 

two tests for all four population groups. First, the instruments are not weak, since the first stage 

F-stats reported in columns (5) and (6) are large and always exceed 10. Second, we cannot reject 

the hypothesis that one of the instruments is exogenous, using the Hansen-J test in column (5). 

 The effect of IRS on the probability of sleeping under an ITN is always positive and 

significant.  This indicates that IRS does not crowd out sleeping under an ITN. So IRS and ITN 

usage are not substitutes but complements. The average partial effects of IRS in our preferred 

specification in column (5) range from 0.0252 (for adult women) to 0.0376 (for older children). 

Finally, in Table 4 we report the full results for each of the six specifications for children 

under 5 for illustrative purposes (results for older children and adults are available upon request).   

                                                           
11

 Malaria prevalence elasticities are calculated using the average partial effect of malaria prevalence, the average 

ITN usage, and the average malaria prevalence. They should be interpreted as the average elasticities. 
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[Insert Table 4 here] 

 For most explanatory variables, the estimated effects are plausible.  For example, free net 

campaigns (+) are an important determinant of the probability of sleeping under an ITN.  

Children who live in households with more nets are more likely to use an ITN. Precipitations 

above normal levels have a positive effect on ITN usage, while temperatures above normal levels 

have a negative effect on ITN usage. Most socio-demographic characteristics have also expected 

signs: age (-), child of household head (+), mother’s completed primary education (+), lowest 

wealth level (-), household size (-), and urban (+).  

 

7. Conclusion  

Consistent with the rational epidemic theory, individuals in Sub-Saharan Africa who live in areas 

(clusters) with higher rates of malaria prevalence are more likely to sleep under an ITN 

compared to individuals who live in areas with lower infection rates. These results hold for our 

four population groups (for children under 5, older children, adult women, and adult men) and 

they are robust to several model specifications that address the potential endogeneity of malaria 

prevalence. However, we find that the malaria prevalence elasticity is always less than one, 

ranging from 0.4179 for adult women to 0.5853 for older children. In addition, we do not find 

that IRS “crowds out” sleeping under an ITN for any of the population groups. In contrast, our 

results suggest that households consider IRS and ITN usage to be complements. 

One of the limitations of our study is that we estimate a static model using cross-sectional 

data, whereas a dynamic model with longitudinal data would more accurately estimate the actual 

changes in malaria prevalence and ITN usage over time.  Unfortunately, there is no available 

longitudinal data on malaria prevalence for the number of countries we study. 
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Overall, the parameters estimated in this study help to fill the vacuum in the models of 

the economic epidemiological literature where researchers are forced to make assumptions about 

key parameters without any solid empirical evidence (Gersovitz and Hammer, 2003, 2005). Our 

findings on the positive but inelastic malaria prevalence of ITN usage and on the 

complementarity between ITN usage and IRS should increase our confidence that malaria can be 

controlled following the current recommendations of GMAP. 
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Table 1. Descriptive statistics 
 

 Children under 5 Older children Adult women Adult men 

Dependent variable     

Sleeping under an ITN  0.447 0.339 0.445 0.332 

the previous night (0.497) (0.473) (0.497) (0.471) 

     

Explanatory variables     
Malaria prevalence  35.46 35.43 33.81 35.34 
(Cluster) (15.26) (15.49) (15.63) (15.45) 
IRS  0.168 0.179 0.169 0.166 
(Household) (0.374) (0.383) (0.375) (0.372) 
Free net campaign 0.388 0.398 0.439 0.340 
(Cluster) (0.487) (0.489) (0.496) (0.474) 
No. of nets per child under 5 0.859 - - - 

(Household) (0.932)    

No. of nets per individual - 0.240 0.290 0.253 
(Household)  (0.232) (0.284) (0.280) 

Lagged ITN usage  22.47 22.61 23.83 19.78 
(Region) (18.58) (18.53) (19.48) (17.41) 
     
Precipitation and temperature (monthly deviations)     

Precipitation  8.55 6.48 10.74 2.752 

(Cluster) (66.17) (66.81) (68.22) (67.81) 

Temperature  -0.042 -0.111 -0.039 -0.082 

(Cluster) (1.643) (1.685) (1.647) (1.682) 

     

Socio-demographic characteristics     

Male 0.498 0.498 - - 

 (0.500) (0.500)   

Age 2.003 9.237 28.02 28.24 

 (1.421) (2.827) (9.396) (9.633) 
Child of the household head 0.747 0.726 - - 

 (0.434) (0.446)   

Woman completed primary education - - 0.777 - 

   (0.416)  

Mother’s age 25.25 - - - 

 (11.29)    

Mother completed  primary education 0.610 - - - 

 (0.487)    

Lowest wealth level 0.343 0.321 0.288 0.265 

(Household) (0.475) (0.467) (0.452) (0.441) 

Household size 6.753 7.198 6.405 6.034 

(Household) (3.346) (3.248) (3.486) (3.339) 
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Urban 0.271 0.288 0.353 0.398 

 (0.444) (0.453) (0.478) (0.489) 

     

Instruments     

Malaria ecology  7.892 7.923 7.867 7.832 

(Cluster) (6.131) (6.242) (6.317) (6.437) 

Predicted malaria prevalence 35.22 34.99 34.41 35.66 

(Cluster) (11.80) (11.93) (12.16) (12.09) 

     

Clusters 2,854 2,854 2,854 2,827 

Observations 54,538 88,171 69,929 55,069 
 
Note: ITN is insecticide-treated net. Malaria prevalence is PfPR2-10 for 2010, IRS (indoor residual spraying) is a binary indicating 
whether the house was sprayed for mosquitos during the last 12 month, free-net-campaign is a binary indicating whether over 
80% of the households received a free ITN during the past two years, precipitation (temperature) difference is the month of the 
interview precipitation (temperature) minus the average, malaria ecology is the Kiszewski et al.’s malaria ecology index, and 
predicted malaria prevalence is the predicted PfPR2-10 for 2010 based on Appendix A.   
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Table 2. Effects on sleeping under an ITN the previous night, for children 

 (1) (2) (3) (4) (5) (6) 
 OLS OLS OLS OLS IV IV 

 
Panel A. Children under 5 
Malaria prevalence  0.0036*** 0.0025*** 0.0022***   0.0023*** 0.0060*** 0.0052***   
 (0.0003) (0.0003) (0.0002 (0.0003) (0.0004) (0.0012) 
 [0.2856] [0.1983] [0.1745] [0.1825] [0.4760] [0.4125] 
IRS 0.0131    0.0192** 0.0155*    0.0186* 0.0344*** 0.0310*** 
 (0.0110) (0.0095) (0.0086 (0.0095 (0.0096) (0.0104) 
Observations 54,538 54,538 53,949 54,538 54,538 54,538 
R-squared 0.1747 0.2175 0.3048 0.2177 0.2103 0.2131 
First stage F-test     681.07 134.97 
p-value of  F-test     0.0000 0.0000 
Hansen J-test     0.491  
p-value of  J-test     0.4837  
       

Panel B. Older children 
Malaria prevalence  0.0039*** 0.0026*** 0.0017*** 0.0025*** 0.0056*** 0.0055*** 
 (0.0003) (0.0002) (0.0002) (0.0002) (0.0004) (0.0010) 
 [0.4076] [0.2717] [0.1777] [0.2613] [0.5853] [0.5748] 
IRS 0.0163 0.0229** 0.0172** 0.0227** 0.0376*** 0.0370*** 
 (0.0109) (0.0091) (0.0075) (0.0092) (0.0093) (0.0101) 
Observations 88,171 88,171 88,171 88,171 88,171 88,171 
R-squared 0.2084 0.2578 0.4180 0.2579 0.2519 0.2520 
First stage F-stat     806.75 134.97 
p-value of  F-test     0.0000 0.0000 
Hansen J-stat     0.018  
p-value of  J-test     0.8942  
       

Controls       
Socio-demographic  Yes Yes Yes Yes Yes Yes 
Country fixed effects Yes Yes Yes Yes Yes Yes 
Precipitation and temperature Yes Yes Yes Yes Yes Yes 
Free net campaign  Yes Yes Yes Yes Yes 
No. of nets per child/individual   Yes    
Lagged ITN usage     Yes   
       

Instruments       
Malaria ecology      Yes Yes 
Predicted malaria prevalence     Yes  
       

For the IV models, the reported R-squared is the centered R-squared.   
Robust standard errors in parentheses clustered at the geographical cluster. Average malaria prevalence elasticities in brackets.  
*** p<0.01, ** p<0.05, * p<0.1 
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Table 3. Effects on sleeping under an ITN the previous night, for adults 

 (1) (2) (3) (4) (5) (6) 
 OLS OLS OLS OLS IV IV 
 
Panel A. Adult women 
Malaria prevalence  0.0038*** 0.0026*** 0.0020*** 0.0025*** 0.0055*** 0.0043*** 
 (0.0001) (0.0001) (0.0002) (0.0001) (0.0004) (0.0010) 
 [0.2887] [0.1975] [0.1520] [0.1899] [0.4179] [0.3267] 
IRS 0.0080 0.0126*** 0.0114* 0.0121** 0.0252*** 0.0198*** 
 (0.0049) (0.0048) (0.0069) (0.0048) (0.0081) (0.0089) 
Observations 69,929 69,929 69,929 69,929 69,929 69,929 
 2,858 2,858 2,858 2,858 2,858 2,858 
R-squared 0.1664 0.2087 0.3274 0.2089 0.2036 0.2071 
First stage F-stat     769.07 100.57 
p-value of the F-test     0.0000 0.0000 
Hansen J-stat     1.683  
p-value of the J-test     0.1945  
       
Panel B. Adult men 
Malaria prevalence  0.0039*** 0.0024*** 0.0017*** 0.0022*** 0.0054*** 0.0044*** 
 (0.0001) (0.0001) (0.0002) (0.0001) (0.0004) (0.0009) 
 [0.4151] [0.2555] [0.1810] [0.2342] [0.5748] [0.4684] 
IRS 0.0096* 0.0164*** 0.0070 0.0182*** 0.0338*** 0.0278*** 
 (0.0055) (0.0054) (0.0073) (0.0054) (0.0088) (0.0096) 
Observations 55,069 55,069 55,069 55,069 55,069 55,069 
R-squared 0.1256 0.1715 0.3309 0.1721 0.1660 0.1692 
First stage F-stat     796.13 179.40 
p-value of the F-test     0.0000 0.0000 
Hansen J-stat     1.586  
p-value of the J-test     0.2078  
       
Controls       
Socio-demographic Yes Yes Yes Yes Yes Yes 
Country fixed effects Yes Yes Yes Yes Yes Yes 
Precipitation and temperature Yes Yes Yes Yes Yes Yes 
Free net campaign  Yes Yes Yes Yes Yes 
No. of nets per child/individual   Yes    
Lagged ITN usage     Yes   
       
Instruments       
Malaria ecology      Yes Yes 
Predicted prevalence     Yes  
       

Robust standard errors in parentheses clustered at the geographical cluster. Average malaria prevalence elasticities in brackets. 
*** p<0.01, ** p<0.05, * p<0.1
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Table 4. Effects on sleeping under an ITN the previous night for children under 5 (all 
effects) 
 (1) (2) (3) (4) (5) (6) 
 OLS OLS OLS OLS IV IV 
       
Malaria prevalence  0.0036*** 0.0025*** 0.0022*** 0.0023*** 0.0060*** 0.0052*** 
 (0.0003) (0.0003) (0.0002) (0.0003) (0.0004) (0.0012) 
IRS 0.0132 0.0193** 0.0156* 0.0187* 0.0345*** 0.0311*** 
 (0.0111) (0.0095) (0.0086) (0.0095) (0.0096) (0.0105) 
Free net campaign  0.282*** 0.166*** 0.281*** 0.268*** 0.271*** 
  (0.0118) (0.0111) (0.0116) (0.0117) (0.0123) 
Number of nets per child under 5   0.182***    
   (0.0043)    
Lagged ITN usage     0.0008**   
    (0.0004)   
       
Precipitation and temperature deviations 
(monthldeviations) 

      
Precipitation 0.0001** 0.0001* 3.80e-05 0.0001** 0.0002*** 0.0001*** 
 (7.23e-05) (6.42e-05) (5.75e-05) (6.45e-05) (6.57e-05) (7.04e-05) 
Temperature -0.0018 -0.0033 -0.0055** -0.0028 -0.0038 -0.0037 
 (0.0031) (0.0026) (0.0025) (0.0026) (0.0026) (0.0026) 
       
Socio-demographic characteristics       
Male 0.0022 0.0020 0.0007 0.00193 0.0013 0.0014 
 (0.0038) (0.0037) (0.0035) (0.0037) (0.0037) (0.0037) 
Age -

0.0229*** 
-

0.0227*** 
-

0.0223*** 
-

0.0227*** 
-

0.0225*** 
-

0.0225***  (0.0013) (0.0013) (0.0012) (0.0013) (0.0013) (0.0013) 
Child of household head 0.0728*** 0.0654*** 0.0983*** 0.0654*** 0.0654*** 0.0654*** 
 (0.0069) (0.0066) (0.0064) (0.0065) (0.0066) (0.0066) 
Mother’s age -0.0002 -2.49e-05 -

0.0025*** 
3.06e-06 -0.0001 -0.0001 

 (0.0004) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) 
Mother completed primary education 0.0452*** 0.0463*** 0.0226*** 0.0471*** 0.0427*** 0.0435*** 
 (0.0072) (0.0066) (0.0061) (0.00667) (0.0068) (0.0069) 
Lowest wealth level -0.0128 -0.0104 0.0063 -0.0111 -0.0197** -0.0176** 
 (0.0082) (0.0074) (0.0068) (0.0074) (0.0077) (0.0082) 
Household size -

0.0102*** 
-

0.0110*** 
-

0.0075*** 
-

0.0111*** 
-

0.0106*** 
-

0.0107***  (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) (0.0008) 
Urban 0.0724*** 0.0482*** 0.0109 0.0476*** 0.0772*** 0.0707*** 
 (0.0103) (0.00859) (0.0079) (0.0085) (0.0094) (0.0133) 
       
Country fixed effects Yes Yes Yes Yes Yes Yes 
       
Instruments       
Malaria ecology      Yes Yes 
Predicted prevalence     Yes  
       
Observations 54,538 54,538 53,949 54,538 54,538 54,538 
R-squared 0.175 0.217 0.305 0.218 0.210 0.213 
First-stage F-stat     681.07 134.97 
p-value of F-test     0.0000 0.0000 
Hansen J-test     0.491  
p-value of J-test     0.4837  
Notes. For the IV models, the reported R-squared is the centered R-squared.  
Robust standard errors in parentheses clustered at the geographical cluster.  *** p<0.01, ** p<0.05, * p<0.1 
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Appendix A 

Table A.1. First-stage regression 

  PfPR2-10 in 2010 
    
Average precipitation  0.0490*** (0.0033) 

… square -0.0005*** (3.91e-05) 
… cube 2.80e-06*** (1.93e-07) 
… quartic -5.06e-09*** (3.36e-10) 

Minimum precipitation  -0.0134*** (0.0015) 
… square 0.0010*** (9.14e-05) 
… cube -2.49e-05*** (1.92e-06) 
… quartic 1.71e-07*** (1.26e-08) 

Maximum precipitation  -0.0259*** (0.0024) 
… square 0.0001*** (1.19e-05) 
… cube -2.70e-07*** (2.42e-08) 
… quartic 2.00e-10*** (0) 

Average temperature  -9.211** (4.515) 
… square 0.694** (0.295) 
… cube -0.0235*** (0.0085) 
… quartic 0.0002*** (9.35e-05) 

Minimum temperature  0.935 (1.562) 
… square -0.0928 (0.119) 
… cube 0.0043 (0.0039) 
… quartic -7.47e-05 (5.00e-05) 

Maximum temperature  -0.745 (2.147) 
… square 0.0181 (0.121) 
… cube 0.0005 (0.0030) 
… quartic -1.78e-05 (2.82e-05) 

Altitude  0.0003*** (6.92e-05) 
… square -4.52e-07*** (1.66e-07) 
… cube 1.22e-10 (1.43e-10) 
… quartic 0 (0) 

Constant  49.01*** (12.31) 
    
Observations (Clusters)  2,854  
R-squared  0.570  
 
Notes. For the precipitation variables, we begin by taking the average temperature for each cluster in each month between 2001 
and 2010.  
“Average precipitation” represents the average over all months and years.  
We then find the month with the smallest average precipitation in the cluster for each year. “Minimum precipitation” represents 
the average of these values over all the years. 
We finally find the month with the highest average precipitation in the cluster for each year. “Maximum precipitation” represents 
the average of these values over all the years. 
We use the exact same methods to get the temperature variables. 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
The prediction of PfPR from this regression is used as an instrument in column (5) of Tables 2, 3 and 4.
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Figure 1. Cluster distribution, malaria prevalence, and ITN usage 


